

海上激光雷达强度-空间联合滤波方法

李正宇1,王鸿东1,2*,魏圣哲2,楼建坤2

¹上海交通大学船舶海洋与建筑工程学院海洋智能装备与系统教育部重点实验室,上海 200240; ²上海交通大学船舶海洋与建筑工程学院海洋工程国家重点实验室,上海 200240

摘要 针对水面无人艇(USV)近距离海上实时目标检测时受海杂波影响严重的问题,结合海杂波空间分布特征和 点云回波强度信息,提出了一种强度-空间联合过滤方法。该方法首先将点云按照距离做区域划分;接着对不同区 域根据激光回波强度随距离的变化关系设置初始阈值,过滤原始点云低强度海杂波;然后对剩余的点云采取离群点 滤波算法,过滤稀疏高强度海杂波,得到目标点云;最后提取离群点滤波中的空间离群点强度特征,对强度阈值滤波 参数进行自适应修正。滤波方法在实船上进行了测试,实验结果表明相比于现有的全局激光回波强度阈值过滤方 法,所提算法在性能上有明显提升,应用于聚类算法后其虚警率和漏警率分别平均降低了4.34%和10.47%,可以为 无人艇航行避碰提供有力支撑。

关键词 遥感; 三维激光雷达; 水面无人艇; 海杂波; 离群点; 点云强度 中图分类号 TN249 文献标志码 A

DOI: 10.3788/CJL221207

1引言

智能感知技术是水面无人艇(USV)自主航行的 关键技术之一,为无人艇自主系统的规划决策提供环 境信息^[1]。当前水面无人艇使用的感知设备主要包括 航海雷达、视觉传感器和激光雷达等^[2],其中航海雷达 有近距离目标感知盲区和测距不准的问题^[3],而视觉 传感器自身无法提供距离信息且无法全天候工作^[4]。 激光雷达凭借其近距离高精度探测以及全天候工作^[4]。 激光雷达凭借其近距离高精度探测以及全天候工作^[4]。 微光雷达先借其近距离高精度探测以及全天候工作的 优点,可以有效弥补船舶航海雷达的探测盲区,使无人 艇拥有全方位、高精度的水面感知能力^[5]。因此,激光 雷达在小型无人艇的水面障碍物识别上具有良好的应 用前景,在无人艇的靠离泊、狭窄航道航行、进出港等 场景均能发挥重要作用^[5]。

不同于激光雷达在无人车和无人机上的成熟应 用^[7-8],激光雷达在无人艇上的应用主要面向静态和半 动态障碍,在动态障碍物实时感知方面还存在不 足^[2,9],这主要是由于水面运动目标周围的水面回波会 对激光雷达产生严重干扰^[10]。激光雷达在小型无人艇 中的应用主要集中于进出港、靠离泊等近海以及港池 内场景,在这些场景下的船只行驶时通常保持一定的 安全距离和安全速度,航行场景较为简单,在这种环境 中海杂波的干扰造成的高虚警率成为了影响小型无人 艇感知的主要障碍。目前在激光雷达的水上使用方 面,Thompson等^[11]提出了一种基于占用网格的海上 环境目标分割和映射方法,该方法实现了海上的多静态目标分割,但由于对海杂波采取强度回波阈值滤波, 过滤效果有限,因此无法处理海杂波影响更强的动态 障碍物场景。Zhang等^[12]使用激光雷达融合图像深度 学习实现了水上目标高精度探测,并在实海域环境下 进行了测试,但是图像感知存在其无法全天候工作的 固有缺点,且并未对激光雷达工作时受到海杂波干扰 的问题做出应对。Hagen等^[13]针对皮艇固有结构研究 出了一种目标追踪方法并进行了验证,但是其适用范 围较窄,对于皮艇以外的目标效果一般。Zhou等^[14]使 用神经网络结构实现水面目标识别,能够以较高的测 量精度和较低的漏检率完成目标检测任务,但是未对 海杂波做针对性处理,实验也仅限于静态目标。

对于无人艇激光雷达近距离运动目标检测时受到 海杂波严重干扰的问题,传统的全局激光回波强度阈 值滤波难以适应复杂的海况。设置的阈值过大则容易 丢失距离较远的目标,导致漏警率偏高;而设置的阈值 过小则无法有效过滤运动目标造成的海杂波,导致虚 警率偏高。

针对上述情况,本文提出了一种空间-强度联合海 杂波过滤方法,该方法通过激光雷达回波强度特性进 行初步过滤,随后通过目标与海杂波分布的疏密特征 差异再次过滤,最后用得到的目标点云对强度信息过 滤参数进行修正。该方法能够在非极端海况下有效过 滤海洋环境的杂波,有效降低激光雷达在海上使用时

通信作者: *whd302@sjtu.edu.cn

收稿日期: 2022-09-02; 修回日期: 2022-10-19; 录用日期: 2022-10-31; 网络首发日期: 2022-11-04

基金项目: 国家自然科学基金(52271348)

的虚警率和漏警率。在实海域环境对算法进行了测试,验证了其可靠性。

2 基本原理

2.1 激光雷达回波强度特性分析

激光雷达的强度值是激光雷达将接收的目标回波 光功率,经过一系列综合处理后返回的一个离散整数 值。它受到多种因素的影响,包括目标反射特性、目标 与激光雷达的距离和激光入射角等。激光回波强度可 用公式简单表示为^[15]

$$I = h \left[K \cdot f(R) \cdot g(\theta) \right], \tag{1}$$

式中:h为激光雷达信号转换函数;K为目标反射系数 以及其他系统参数的乘积;f(R)为距离因子,表征反 射强度随距离的变化关系;R为激光雷达中心到目标 点的距离; $g(\theta)$ 为角度因子,表征目标反射强度的空 间分布情况; θ 为目标点相对雷达的入射角度。

当目标为余弦朗伯体时,激光回波强度可以表示为^[16]

$$I = h \left[P_{\tau} \eta_{\tau} \eta_{\tau} \frac{D^2}{4} \cdot \frac{\exp(-2\alpha R)}{R^2} \cdot \rho \cos \theta \right], \quad (2)$$

式中:P_t为激光器发射功率;η_t为发射光学系统的光 学效率;η_r为接收光学系统的光学效率;D为接收探 测器的孔径;α为大气单程消光系数;ρ为目标的反 射率。

当采用全局强度阈值进行海杂波过滤时,处理过 程无法反映激光雷达强度值的多种影响因素。在处理 远距离激光雷达数据时,全局强度阈值与局部环境特 征不匹配通常表现为强度阈值大于有效目标点云强 度,从而导致出现过分割;在处理近距离激光雷达数据 时,全局强度阈值与局部环境特征不匹配通常表现为 强度阈值小于较高海况的杂波强度,从而导致后续处 理出现欠分割^[17]。

由于单一的强度特征无法表现所有区域的环境特征,故在本方法中点云强度特征主要用于初步过滤大范围低强度海杂波。

2.2 海杂波分布特征分析

海杂波由于海洋环境的复杂性呈现非高斯、非线 性和非平稳特性^[18],这使得海杂波特性难以准确描述, 同时回波信噪比(SNR)低使得海杂波背景下的目标 检测难度大^[19]。

在实海域测试时,干扰激光雷达感知的杂波主要 分为以下两种:(1)平稳状态下海面起伏造成的杂波, 如图1所示;(2)由于船只运动导致海面剧烈起伏造成 的杂波,如图2所示。

图 1 中,坐标原点位置为布置于船头的激光雷达, ship 点云为自船点云,以坐标原点为中心的圆弧状点 云和少量离散点为平稳水面反射的杂波点云信息,该 部分杂波点云强度远低于相似距离船只和浮标等目标

Fig. 2 Lidar signals of fluctuating water surface

的点云强度。

图 2中,坐标原点位置为布置于船头的激光雷达, ship 2点云为自船点云,ship 1为自船附近经过的一艘 快艇,其船尾扇形分布的点云为起伏水面反射的杂波 信息,同时周围存在离散点云杂波,船尾附近的杂波点 云强度分布不均匀,且其中的高强度部分与相似距离 船只的点云强度差异不明显。

结合以上实例和其余实船测试结果可以初步归纳 激光雷达探测下海杂波的分布规律。

从强度方面分析,由于水吸收激光,激光雷达只能 从水的表面获得低强度的回波。然而,在海面波动剧 烈的条件下,水可能产生高强度的假反射。这会使强 度阈值在剧烈起伏的条件下难以调整^[11]。结合实验数 据分析,普通海况下平稳水面的海杂波均为低强度点 云;起伏水面的海杂波主要特征为大部分低强度点云 中夹杂少量离散的高强度点云。

从空间分布方面分析,平静水面产生的海面回波 大部分以环形分布在船只周围,其余以离散点的形式 杂乱分布在各个位置;剧烈波动的水面反射回波大多 分布在船尾后开尔文船波区域,并在船只驶过后仍会 保留一段时间。

根据特点可以将杂波分为两部分进行处理。第一 种杂波的特点为强度明显低于目标、空间分布密集、点 云数量较多;第二种杂波的特点为强度与目标点云区 别不明显、空间分布离散、点云数量较少。图3所示为 海上点云示意图,包括目标点云和上述两种海杂波。

单独采用强度信息和空间分布信息都无法同时过 滤上述两种杂波。仅从强度信息出发难以处理强度较

图 3 海上点云示意图 Fig. 3 Diagram of point clouds at sea

高的杂波,最终结果仍会残留噪声;仅从空间分布出发则难以区分空间分布密集的杂波,无法达到理想效果。因此本文采取强度-空间联合过滤的方法。

3 联合海杂波过滤方法

本文提出的强度-空间联合海杂波过滤方法流程 如图4所示,包括以下四个步骤:

(1)原始点云区域划分。根据点云到激光雷达的 距离将原始点云分为数个环形区域,以适应点云局部 环境变化。

(2)基于强度信息的初步过滤。通过初始强度-距离变化关系和后续修正对不同区域分别设置强度阈 值,对原始点云数据进行过滤,主要目的是过滤环境中 的大量低强度杂波。

(3) 基于空间分布的离群点过滤。对不同区域应 用不同参数的离群点滤波算法,过滤杂波中的离散高 强度部分,从而得到仅含目标信息的点云。

(4)强度阈值滤波的修正。根据过滤结果对强度 过滤的阈值进行修正,从而避免由于初始滤波阈值设 置与实际海况不匹配导致的过分割或者欠分割。

图4 海杂波过滤算法流程图

Fig. 4 Flow chart of sea clutter filtering algorithm

3.1 原始点云区域划分

激光雷达回波强度受目标距离和激光入射角等因 素影响,并且环境特征和障碍物空间分布也会在很大 程度上导致局部范围内点云强度的变化,造成各处点 云存在入射角及射距跨度大、强度分布严重不均匀的 问题^[20],因此在处理点云时需要对原始点云进行初步 分割,保证同一区域内的点云环境特征相似且强度分 布均匀。由于海上障碍物通常形状较为复杂,激光入 射角在形状复杂的物体表面难以控制在某一区间内, 因此初步分割将目标与激光雷达距离作为分割的主要 依据。

同时,经过实海域测试发现,在激光雷达海上有效 探测范围内,较远距离几乎不会出现海杂波,因此远距 离海杂波对目标探测影响极小,可以忽略不计。考虑 到滤波会降低对较远距离小型目标的探测能力,算法 仅作用于海杂波影响较大的区域,此处设置距离阈值 *d*_s和*d*_e作为应用滤波算法的起止距离。

点云划分将滤波范围内点云P按照距离间隔*d*分为子集合*P*₁, *P*₂, …, *P*_n, 对于*P*内的每个点*p*_i, 当*p*_i满足下式时将*p*_i存入子集合*P*_k:

 $d_{p,o} \in \left[d_{s} + (k-1)d, d_{s} + kd \right], k \in \mathbf{N}_{+}, \quad (3)$ 式中: $d_{p,o}$ 为点 p_{i} 到激光雷达的距离。

3.2 基于强度信息的初步过滤

区域划分后每个区域内的点云到激光雷达距离 与环境特征相似,因此区域内可认为点云强度差异主 要来源于材质差异导致的反射率差异,此时对每个区 域采取分段强度阈值过滤,将滤除大量空间分布较密 集的低强度杂波和少量低强度目标点云,留存少量离

散高强度杂波和大量目标点云。考虑式(1)和式(2) 中的点云强度影响因子:入射角由于复杂的海浪波动 难以确定;同时水作为透明介质,其反射率受入射角 影响,因此海面反射率也并不是固定值;激光雷达内 部信号处理过程无法获得,且可能因为型号不同而存 在差异。因此,在无法获得必要的影响因子的情况 下,需要采取数据驱动的方式建立相应的模型以确定 初始强度阈值。图5所示为分段强度阈值过滤示 意图。

图 5 分段强度阈值过滤示意图 Fig. 5 Schematic of segmented intensity threshold filtering

对每个区域分别计算强度阈值。分段过滤设置强 度阈值为*I*₁,*I*₂,...,*I*_n,分别对应区域*P*₁,*P*₂,...,*P*_n。对 于任一区域*P*_k,其强度阈值的具体计算公式为

$$I_{k} = uI_{k_{0}} + (1 - u)I_{m_{k}}, \qquad (4)$$

式中: I_{k_0} 为区域 P_k 初始设置的强度阈值; I_{m_k} 为后续的 修正值, $I_{m_0} = 0$;u为权重,且当修正值 $I_{m_k} = 0$ 时u = 1, 当修正值 $I_{m_k} \neq 0$ 时u为固定值。

上述初始强度阈值是依靠实验确定的经验参数, 保证其初始偏差较小。强度修正值的说明和具体计算 将在3.4节给出。确定区域强度阈值后对每个区域按 照阈值进行过滤,将数据分割为两个部分:

$$\begin{cases} P_k^+, I_p \geqslant I_k (p \in P_k^+) \\ P_k^-, I_p < I_k (p \in P_k^-) \end{cases}, \tag{5}$$

即在区域 P_k 中,若点云强度大于等于阈值 I_k 则归入点云集 P_k^+ ,若点云强度小于阈值 I_k 则归入点云集 P_k^- 。

3.3 基于空间分布的离群点过滤

离群点过滤^[21]可用于剔除点云中的稀疏点,其主 要判定依据为点与邻域点集的距离统计信息。经过 强度信息过滤后,原始点云仅留存少量强度较高的杂 波点,且通常以离散点的方式存在于船体附近,因此 其邻域点云密度明显小于船体点云,用离群点过滤方 法可以有效区分该部分点云。离群点过滤具体流程 如下。

(1) 对于 P_k^+ 内的每个点 p_{k_i} ,计算其到n个最邻近 点距离 $\{d_{ij_i}, d_{ij_i}, \dots, d_{ij_n}\}$ 。

第 50 卷 第 19 期/2023 年 10 月/中国激光

(2) 计算*d*_{ii}的均值与标准差:

$$\overline{d} = \frac{\sum_{k=1}^{n} d_{ij_k}}{n}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} \left(d_{ij_k} - \overline{d} \right)^2}{n-1}}^{\circ}$$
(6)

(3) 计算离群点判定阈值:

$$\overline{d} + \sigma_{\circ}$$
 (7)

(4)如果 d_i > λ则判定为离群点,进行剔除。将 剔除的点云存入新点云集 P^e_k中。

 $\lambda =$

3.4 强度阈值滤波的修正

在上述算法中,由于强度阈值滤波部分的初始参数依靠实验统计的方法确定,因此尽管其在普通场景下可以取得不错的滤波效果,但无法准确反映环境特征导致的局部点云强度变化。当有船只经过雷达附近水域时,船只附近点云强度相比平静水面将会增大,此时仍采用原始强度阈值将会导致大量海杂波点云无法 滤除,进而导致海杂波区域和船只自身的点云疏密程 度差异降低,从而导致滤波效果不佳。

针对上述情况,本文在离群点滤波后依据滤波结 果对强度滤波的阈值进行修正,从而使其能够反映各 个区域的环境特征和障碍物变化。方法主要思路为将 过滤的离群点当作对海杂波中较高强度部分的采样, 该部分可以表征当前区域内杂波强度特性,对该部分 点云加以处理,得到强度阈值的修正值。

修正值的计算式如下:

$$I_{m_{k+1}} = \frac{\sum_{j=1}^{k} I_{k_j}}{n_{p_k^*} + 1},$$
(8)

式中: $I_{k_{s}}$ 为区域 P_{k}^{o} 中每个点的强度; $n_{P_{k}^{o}}$ 为区域 P_{k}^{o} 中点 云数量。

由于空间离群点过滤时的点云经过了强度阈值滤 波,因此采样得到的杂波强度并不能完整地反映原始 点云杂波的强度特征,而是会略大于理想的杂波过滤 阈值。当修正值过大时,可能会出现过分割的情况,此 时需要合适地选择式(4)中的权重*u*。

4 实验结果与分析

为了验证算法效果,在日照世帆赛基地的港池内 进行实船测试。测试所用的实验平台为江苏自动化研 究所研发的JARI-USV无人艇,平台搭载了激光雷达、 全景相机、组合导航系统等设备。测试地点位于山东 省日照市万平口海域,场景包括从近岸至港池出口的 沿途水面环境及船只等障碍物。

测试所用雷达为速腾 RS-Lidar-32的 32线激光雷达,视场范围为 360°,角分辨率为 0.2°,海上最大探测距离约为 120 m(实测值),实验中选择 10 Hz 旋转频率

第 50 卷 第 19 期/2023 年 10 月/中国激光

采集周围环境的点云信息。

实验中测试了进出港时对动态目标的探测效果。 为了定量评价滤波算法效果,选取了虚警率和漏警率 两个指标进行评价:

$$R_{\rm FP} = \frac{N_{\rm FP}}{N_{\rm FP} + N_{\rm TN}},\tag{9}$$

$$R_{\rm FN} = \frac{N_{\rm FN}}{N_{\rm TP} + N_{\rm FN}},$$
 (10)

式中:R_{FP}为虚警率;R_{FN}为漏警率;N_{FP}表示将杂波检测为目标的频次;N_{TN}表示正确识别杂波的频次;N_{FN}表示目标未识别的频次;N_{TP}表示目标正确识别的频次。

4.1 参数选取

实验中相关参数的选取如表1所示。

表1 滤波相关参数 Table 1 Parameters of filtering

Notation	$d_{\rm s}/{ m m}$	$d_{\rm e}/{ m m}$	d /m	п	и
Value	10	70	15	30	0.5

具体参数选取依据介绍如下。

对于算法应用距离 *d*_s和 *d*_e,选取足够多帧船只航 行时仅含杂波的场景,以此为依据确定杂波影响范围。

剔除母船自身点云后统计数据中杂波出现的距离-强度关系,绘制强度分布图,如图6所示。

从图 6 可知, 剔除近距离船只自身反射的点云并 综合海上使用需求可以确定算法开始距离 d_s为 10 m, 而点云与激光雷达的距离超过 61.65 m时, 后续点云 在距离刻度上的差值均大于 1 m, 可以认为其影响较 小,考虑冗余, 实验设置算法终止距离 d_s为 70 m。

确定距离间隔 d 的主要依据为海上环境特征。由 于海上目标往往相隔较远, d 过小时, 无法将杂波与目 标放入一个区域内, 从而导致区域内点云无法体现差 异化, 而 d 过大时, 则同一区域内点云强度受距离因素 影响显著,同样会影响滤波效果。考虑到海上小型目标往往长度在10m左右,将目标完整纳入区域的距离间隔 d 可以选择 10~20m,本次实验选择 15m 作为区域划分间隔。

选择强度过滤初始阈值的主要依据为杂波强度分 布。由于雷达在校正强度后并不一定严格遵循式(2) 中的变化规律^[22],且海面的反射率和激光入射角也并 不是固定值,因此最终选取阈值时采用的方法是预先 确定总体过滤率,再通过杂波强度分布情况反演出该 区域达到预计过滤率时的强度阈值。结合图5分析, 设置初始阈值时统计每个区域内杂波点云强度分布, 由于大部分情况下算法修正得到的强度阈值均大于初 始阈值,因此初始阈值选择不宜过大,以避免漏警率升 高。将总体过滤率80%作为选择初始阈值的依据,得 到的初始阈值如表2所示。

表 2 初始强度阈值 Table 2 Initial intensity thresholds

		5		
Notation	I_1	I_2	I_3	I_4
Value	30	16	7	4

离散点统计过程中选择邻近点数量*n*的主要依据 为点云密度。考虑到某个区域可能存在点云及其稀疏 的情况,设置邻近点数量为min{30,0.1*n_k*},其中*n_k*为 区域内点云数量。

点云修正权重系数 u 是通过实验确定的。对同 一组数据采取不同的权重系数进行测试,分别测试 u = 0.2, 0.4, 0.6, 0.8 时区域 P_2 内点云修正后的强度 阈值,并与根据数据人工标注的理想强度阈值进行对 比。测试结果如图 7 所示。随着权重系数 u 的增大, 修正后的强度阈值趋向于更接近初始值 I_2 ,但权重系 数并不影响修正值的总体变化趋势,仅控制变化幅 度。当u = 0.6 时,修正后的强度阈值与人工标注的 阈值吻合情况较好,故选择 0.6 作为最终实验时的权 重系数。

4.2 滤波结果分析

为了测试本文提出的强度-空间联合海杂波滤波

算法的性能,分别绘制算法不同滤波过程后的滤波结 果点云图,对算法效果进行分析,如图8所示。

图8 不同阶段滤波结果。(a)原始点云;(b)强度阈值滤波结果;(c)最终结果

Fig. 8 Filtering results at different stages. (a) Original point cloud; (b) result after intensity threshold filtering; (c) final result

图 8(a)中,原始点云杂波部分包含母船周围的环 形杂波点和目标船尾波区域的杂波点,目标包括原点 左侧的浮标和前方经过的船只。图 8(b)中,经过强 度阈值过滤后,母船周围的环形杂波点全部滤除,船 尾波区域剩余一些离散的杂波点,大部分浮标点云和 船只点云均保留。图 8(c)中,经过空间分布疏密过 滤后,离群点被过滤,仅留下两个目标的点云信息。 对于图 8 中各个过滤阶段,手动提取点云数据并做定 量分析,得到表 3 所示结果。表 3 中 N_t和 N_t分别表 示目标 1 浮标和目标 2 快艇的点云数量, N_c表示杂波 点云的数量, N_t表示总点云数量, R_c表示杂波点云 占比。

表 3 点云过滤结果分析 Table 3 Analysis on point cloud filtering results

	5 1		8		
Point cloud	$N_{\mathfrak{t}_1}$	$N_{\mathfrak{t}_2}$	$N_{ m c}$	N_{t}	$R_{\rm c}$ / $\%$
Original point cloud [Fig. 8(a)]	5	1142	1478	2625	56.30
Point cloud after intensity filtering [Fig. 8(b)]	4	894	16	914	1.75
Final point cloud [Fig. 8(c)]	4	892	6	902	0.67

根据表3分析可以发现,该方法中强度阈值滤波 阶段能够过滤大部分杂波点,并且由于目标和海面反 射特性的不同,目标点云损失率远小于杂波点的损失 率,而空间分布疏密过滤则可以对强度阈值过滤后的 高强度杂波点进行进一步过滤,最终得到较为理想的 杂波过滤率。

为了进一步验证本方法的性能,将本文方法与传统全局强度阈值滤波方法进行对比研究,选取全局过滤率80%和90%的强度阈值作为参照组。选取的场景为出港时多动态目标场景,具体如图9所示。该组

图 9 多动态目标测试场景 Fig. 9 Multi-dynamic-target test scenario

数据内包含三个目标:自船位于原点处,目标1为邮轮,目标2和目标3均为帆船。邮轮的点云强度较高, 分布密集,但艉波明显,易受杂波干扰而导致探测虚警 率高;帆船的点云强度较低,几乎无艉波,中远距离探 测漏警率高。选取连续196 frame目标进行分析。采 用欧式聚类算法^[23]进行目标提取,该算法对受干扰情 况下的数据效果良好,能胜任大多数情况下的点云分 割任务^[24]。若某帧内存在目标丢失则标记为漏警,存 在杂波目标则标记为虚警。

对于实验中特定场景进行分析,如图 10 所示,在 该场景中,自船位于坐标原点处,最左侧船只由于受 大船遮挡,其点云强度略低于直接扫描时的点云强 度。在该情况下全局强度阈值滤波容易造成漏警, 如图 10(a)所示;而本文方法可以通过调整该区域滤 波强度阈值较好地适应场景,无漏警,如图 10(b) 所示。

对于近距离水面波动较大的情况,如图 11 所示, 在该场景中,右侧船只以较高速经过自船,引起了附近 海面的剧烈波动,该区域内杂波强度异常增加。在该 情况下全局强度阈值滤波无法调整过滤参数,容易导 致虚警,如图 11(a)所示;而本文方法检测到离群点强 度增大后调整了强度阈值,从而有效避免了虚警,如 图 11(b)所示。

图 10 有障碍物时不同滤波方法检测结果。(a)全局强度阈值滤波;(b)本文滤波方法

Fig. 10 Detection results by different filtering methods with obstacles. (a) Global intensity threshold filtering; (b) filtering method of this paper

图 11 水面波动时不同滤波方法检测结果。(a)全局强度阈值滤波;(b)本文滤波方法

最终各项指标的计算结果如表4所示。综合分析,本文方法的虚警率和漏警率相比传统的全局阈值

滤波均有所降低,平均虚警率降低了4.34%,漏警率降低了10.47%,进一步验证了本文方法的有效性。

表4 不同算法结果对比

Filtering method	$N_{ m FP}$	$N_{ m FN}$	$R_{ m FP}$ / $\%$	$R_{ m FN}$ / $\%$
Global intensity threshold filtering (80% filtering)	13	32	6.63	16.33
Global intensity threshold filtering (90% filtering)	8	39	4.08	19.90
Proposed filtering method	2	15	1.02	7.65

Table 4 Comparison between different filtering algorithms

为了对比算法各个部分对于最终滤波结果的影响,列出了仅用分段强度阈值滤波、采用分段强度阈值 滤波和空间离群点滤波,以及二者加上阈值修正时的 漏警和虚警结果,如表5所示。分析可知,分段强度阈 值滤波主要作用为有效降低虚警率,但根据滤波强度 阈值的设置会在一定程度上提高漏警率,强度阈值越 高,虚警率越低,漏警率越高;空间离群点滤波主要作 用为在强度阈值滤波的基础上,在不增加漏警率的前 提下进一步降低虚警率;最后的强度阈值修正则可以 使得本文滤波方法适应环境的变化。阈值对于当前海 况过高的情况下,由于强度阈值过滤后不存在离群点, 下一帧的强度阈值将会降低直到提取到离群点为止;

化0 开拓口的权相不可以	表 5	算法各	阶段结	果对	比
--------------	-----	-----	-----	----	---

Table 5	Comparison	of different	stages of	proposed	filtering	algorithm
I ubic 0	Companioon	or uniterent	orageo or	proposed	meering	angorranni

Filtering stage	$N_{ m FP}$	$N_{ m FN}$	$R_{ m FP}$ / $\%$	$R_{ m FN}$ / $\%$
Segmented intensity threshold filtering	10	22	5.10	11.22
Segmented intensity threshold filtering combined with outlier filtering	6	22	3.06	11.22
Proposed filtering method	2	15	1.02	7.65

阈值对于当前海况过低的情况下,则会逐渐增加阈值 直到达到稳定状态。该环节可以同时降低最终滤波的 虚警率和漏警率。

5 结 论

本文提出了一种海上激光雷达的强度-空间联合 滤波方法。对于强度信息易受局部动态障碍物和海况 影响而变化的问题,采取区域分割后设置动态强度阈 值的方法加以解决;对于强度阈值过滤无法滤除少量 高强度杂波点的问题,采取空间离群点过滤的方法进 行处理;同时提取空间离群点强度特征作为修正动态 阈值的依据,使得动态阈值变化吻合环境特征变化。 实船实验结果表明,在检测动态目标时,相比全局阈值 滤波方法,本文方法在虚警率和漏警率上分别平均降 低了4.34%和10.47%,验证了本文方法在小型无人艇 进出港场景下的优越性,为无人艇自主航行提供了技 术支撑。对于更高海况和更复杂运动场景,后续可以 进一步研究将杂波分布的时序变化纳入修正范围中, 提高算法在极端场景下的鲁棒性。

参考文献

- [1] 楼建坤,王鸿东,王检耀,等.基于机器学习的实海域无人艇避 碰算法智能演进方法[J].中国舰船研究,2021,16(1):65-73.
 Lou J K, Wang H D, Wang J Y, et al. Intelligent evolution method for obstacle-avoidance algorithm of unmanned surface vehicles in real sea trial based on machine learning[J]. Chinese Journal of Ship Research, 2021, 16(1):65-73.
- [2] Liu Z X, Zhang Y M, Yu X, et al. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71-93.
- [3] 庄佳园,徐玉如,万磊,等.基于雷达图像的水面无人艇目标检测技术[J].哈尔滨工程大学学报,2012,33(2):129-135.
 Zhuang JY, XuYR, WanL, et al. Target detection of an unmanned surface vehicle based on a radar image[J]. Journal of Harbin Engineering University, 2012, 33(2):129-135.
- [4] 詹华蕊,姜晓荣.复杂背景下无人艇视频视觉目标图像识别算法
 [J].舰船科学技术,2020,42(16):79-81.
 Zhan H R, Jiang X R. Image recognition algorithm of unmanned aerial vehicle video under complex background[J]. Ship Science and Technology, 2020, 42(16):79-81.
- [5] 庄加兴, 焦依, 殷非. 毫米波雷达与激光雷达在无人船上的应用
 [J]. 船舶工程, 2019, 41(11): 79-82, 119.
 Zhuang J X, Jiao N, Yin F. Application of MMW radar and LIDAR in MASS[J]. Ship Engineering, 2019, 41(11): 79-82, 119.
- [6] Jimenez Ruiz A R, Seco Granja F. A short-range ship navigation system based on ladar imaging and target tracking for improved safety and efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1): 186-197.
- [7] Zhao F, Jiang H, Liu Z W. Recent development of automotive LiDAR technology, industry and trends[J]. Proceedings of SPIE, 11179: 111794A.
- [8] Li X L, Liu C, Wang Z N, et al. Airborne LiDAR: state-of-theart of system design, technology and application[J]. Measurement Science and Technology, 2021, 32(3): 032002.
- [9] Halterman R, Bruch M. Velodyne HDL-64E lidar for unmanned

第 50 卷 第 19 期/2023 年 10 月/中国激光

surface vehicle obstacle detection[J]. Proceedings of SPIE, 2010, 7692: 76920D.

- [10] 柳晨光,郭珏菡,吴勇,等.无人水面艇三维激光雷达目标实时 识别系统[J].机械工程学报,2022,58(4):202-211. Liu C G, Guo J H, Wu Y, et al. 3D LiDAR based real-time object recognition system for unmanned surface vehicles[J]. Journal of Mechanical Engineering, 2022, 58(4): 202-211.
- [11] Thompson D, Coyle E, Brown J. Efficient LiDAR-based object segmentation and mapping for maritime environments[J]. IEEE Journal of Oceanic Engineering, 2019, 44(2): 352-362.
- [12] Zhang W, Yang C F, Jiang F, et al. A water surface moving target detection based on information fusion using deep learning[J]. Journal of Physics: Conference Series, 2020, 1606(1): 012020.
- [13] Hagen I B, Brekke E. Kayak tracking using a direct lidar model [C]//Global Oceans 2020: Singapore-U.S. Gulf Coast, October 5-30, 2020, Biloxi, USA. New York: IEEE Press, 2020.
- [14] Zhou Z G, Li Y Y, Cao J W, et al. Research on surface target detection algorithm based on 3D lidar[C] //2021 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), June 18-20, 2021, Chengdu, China. New York: IEEE Press, 2021: 489-494.
- [15] 童祎,夏珉,杨克成,等.基于激光雷达强度值的目标反射特征 提取[J].激光与光电子学进展,2018,55(10):102802.
 Tong Y, Xia M, Yang K C, et al. Target reflection feature extraction based on lidar intensity value[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102802.
- [16] 戴永江. 激光雷达原理[M]. 北京: 国防工业出版社, 2002. Dai Y J. The principle of lidar[M]. Beijing: National Defense Industry Press, 2002.
- [17] 王祝,王智,张旭,等.基于二维激光雷达的自适应阈值聚类分 割方法[J].中国激光,2021,48(16):1610005.
 Wang Z, Wang Z, Zhang X, et al. Adaptive threshold clustering segmentation method based on two-dimensional lidar[J]. Chinese Journal of Lasers, 2021, 48(16):1610005.
 [19] Word K D, Watte S, Liao of acceletter models in reder design and
- [18] Ward K D, Watts S. Use of sea clutter models in radar design and development[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 146-157.
- [19] 何友,黄勇,关键,等.海杂波中的雷达目标检测技术综述[J].现 代雷达,2014,36(12):1-9.
 He Y, Huang Y, Guan J, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12):1-9.
- [20] 李维刚, 樊响, 梅洋, 等. 基于车载激光点云的道路标线提取方法[J]. 中国激光, 2022, 49(7): 0710001.
 Li W G, Fan X, Mei Y, et al. Road marking extraction method based on vehicle laser point cloud[J]. Chinese Journal of Lasers,
- 2022, 49(7): 0710001.
 [21] 杨福萍,王洪国,董树霞,等.基于聚类划分的两阶段离群点检测算法[J]. 计算机应用研究, 2013, 30(7): 1942-1945.
 Yang F P, Wang H G, Dong S X, et al. Two-stage outliers detection algorithm based on clustering division[J]. Application Research of Computers, 2013, 30(7): 1942-1945.
- [22] Pfeifer N, Dorninger P, Haring A, et al. Investigating terrestrial laser scanning intensity data: quality and functional relations [EB/OL]. [2022-05-06]. https://publik.tuwien.ac.at/files/pub-geo_ 1932.pdf.
- [23] Nguyen A, Cano A M, Edahiro M, et al. Fast Euclidean cluster extraction using GPUs[J]. Journal of Robotics and Mechatronics, 2020, 32(3): 548-560.
- [24] 胡杰,刘汉,徐文才,等.基于三维激光雷达的道路障碍物目标 位姿检测算法[J].中国激光,2021,48(24):2410001.
 Hu J, Liu H, Xu W C, et al. Position detection algorithm of road obstacles based on 3D LiDAR[J]. Chinese Journal of Lasers, 2021,48(24):2410001.

Marine Lidar Intensity-Space Combined Filtering Method

Li Zhengyu¹, Wang Hongdong^{1,2*}, Wei Shengzhe², Lou Jiankun²

 1 Key Laboratory of Marine Intelligent Equipment and System, Ministry of Education, School of Naval Architecture, Ocean

and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;

²State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Objective In the field of unmanned surface vehicle (USV), the intelligent perception is essential for decision-making process, which provides environmental information for the navigation system. Lidar can effectively address the problem brought by detection blind spots of other sensors with its close-range, high-precision, and all-weather capability, which enables USV to possess all-round and high-precision water surface perception ability. However, in practice, sea clutter often causes serious interference with the detection of lidar, resulting in false alarms in the perception system. In the pre-processing stage of lidar, traditional filtering algorithms are difficult to cope with complex marine environments, which may lead to omitted alarms due to insufficient subdivision. Therefore, a suitable sea clutter filtering algorithm is crucial for applications of lidar on USVs.

Methods To deal with the interference brought by the sea clutter to the perception system of USV, we propose a intensity-space combined sea clutter filtering method. Noticeably, the sea clutters can be divided into two types. The first type is characterized by a significantly lower intensity than the target point cloud, which corresponds to a dense spatial distribution and a large point cloud, while the second type has an intensity similar to that of the target point cloud, whose spatial distribution is discrete and point cloud is sparse. For the first type of clutter, the dynamic intensity threshold is set for filtering, and for the second type of clutter, the spatial outlier algorithm is used for filtering. In order to make the intensity threshold conform to the changes of real marine environment, the threshold of the intensity filter is corrected according to the filtering results after outlier filtering, so that it can reflect the environmental characteristics and obstacle changes in each region. The main idea of the method is to take the filtered outliers as a sample of the higher intensity threshold is obtained by processing the point cloud in this part. The algorithm is tested on a real ship with 196 consecutive frames starting from the time of departure, where there are multiple dynamic targets, including a cruise ship and two sailing ships. Object detection uses Euclidean clustering algorithm for extraction. When there is a loss of targets in a frame, it is marked as an omitted alarm, and targets with clutter are marked as false alarms. The test results are compared with those of the intensity threshold filtering method.

Results and Discussions The results of the real ship experiment show that the algorithm has significantly reduced the false alarm rate and the omitted alarm rate. When the filtering rate achieved by the intensity threshold filtering is 80%, our algorithm can reduce the false alarm rate by 5.61% and the omitted alarm rate by 8.68%. When the filtering rate realized by the intensity threshold filtering is 90%, our algorithm can decrease the false alarm rate by 3.06% and the omitted alarm rate by 12.25% (Table 4). This verifies that the algorithm has obvious advantages over the intensity threshold filtering method of different filtering rates. When the target signal is occluded by an obstacle, the intensity of the target point cloud is lower than that of the usual target point cloud, and the intensity threshold filtering is easy to cause omitted alarms. In this case, the proposed algorithm can better adapt to the scene (Fig. 10). When the target passes through the USV at a high speed, there will be high-intensity clutter around, and the intensity threshold filtering is easy to cause false alarms. In this case, our algorithm is also applicable by adaptively increasing the intensity threshold (Fig. 11). Experimental results show that the proposed algorithm can adapt to different maritime environments and effectively reduce the false alarm rate and omitted alarm rate during perception.

Conclusion In this paper, an intensity-space combined filtering method for marine lidar is proposed. For the intensity information that is susceptible to local dynamic obstacles and sea conditions, the dynamic intensity threshold is set after regional segmentation. For the small number of high-intensity clutter points left after the intensity threshold filtering, the spatial outlier filtering method is adopted for processing. At the same time, the intensity characteristics of spatial outliers are extracted as the basis for correcting the dynamic threshold, which makes the changes of dynamic threshold coincide with the changes of environments. The results of the real ship experiments show that compared with the intensity threshold filtering method, the proposed method reduces the false alarm rate and omitted alarm rate in face of dynamic targets by 4.34% and 10.47%, respectively, which verifies the feasibility of the proposed method.

Key words remote sensing; three-dimensional lidar; unmanned surface vehicle; sea clutter; outliers; point cloud intensity